

TEXAS A\&M UNIVERSITY • A SEA GRANT COLLEGE

TABLE OF CONTENTS

1. Foreword, p. 3
II. Acknowledgments, p. 3
III. The Most Destructive Weather Phenomenon Known, p. 4
IV. Description of the Hurricane, p. 6
V. A Brief Resumé of a Few Texas Hurricanes, p. 10
VI. Climatological Data, p. 13
VII. What's the Probability?, p. 13

Appendix I, p. 18
Appendix II, p. 22
References, p. 27
Future Booklets, p. 27

HURRICANES on the Texas Coast

Description and Climatology

March 1975
TAMU-SG-75-501

1. FOREWORD

When a hurricane, regardless of its size or intensity, strikes the coast of Texas and travels inland, it affects the lives of thousands and possibly millions of Texans. Besides the obvious physical damages due to storm surge, high winds, and high tides, which are usually restricted to the area near the coast, there are also damages due to large amounts of rainfall that may extend inland for many hundreds of miles. This rainfall sometimes helps to relieve drought, but more often it causes widespread flooding, harmful erosion, and ruined crops.

This booklet is the first in a series of three prepared by Texas A\&M's Center for Applied Geosciences for publication by the University's Sea Grant Program. The series is designed to help Texans understand, prepare for, and recover from the harmful effects of hurricanes. This publication describes various types of tropical cyclones and hurricanes. The characteristics of hurricanes and their frequency of occurrence over sections of the Texas coast also are analyzed. The second booklet in this series deals more specifically with hurricane damage due to flooding, either by storm surge or heavy rains, and wind and tornado hazards. The final booklet discusses precautions and actions that may be taken to minimize hazards and to save lives.

II. ACKNOWLEDGMENTS

We extend our most sincere appreciation to Dr. Robert H. Simpson, former Director of the National Hurricane Center, Miami, Florida, for his timely comments and assistance on the final draft of this booklet. We wish to thank Dr. James R. Scoggins, Director of the Center for Applied Geosciences, Texas A\&M University, for his continued guidance and support throughout this project. Thanks also are given to Dr. Dennis M. Driscoll for his assistance on the many drafts of this volume. Also, we would like to acknowledge the help of Mr. Joseph Pelissier of the National Hurricane Center, who furnished background information, and Ms. Teena Conklin of the Texas Highway Department for assistance in obtaining many of the photographs used in this study. Special thanks are extended to Ms. Polly Luther for the professional typing of the many drafts.

III. THE MOST DESTRUCTIVE WEATHER PHENOMENON KNOWN

What is a hurricane? It is an immense, cyclonically (counterclockwise) swirling storm system covering thousands, sometimes hundreds of thousands of square miles. Peak wind gusts near the center of the hurricane may exceed $200 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Due to its size, intensity, and duration, the hurricane is the most destructive weather phenomenon known to man.

The English word "hurricane" probably comes from the Spanish word "Huracan," which was derived from either Hunraken, the Mayan storm god, or Hurakan, the Quiche god of thunder and lightning. The word hurricane designates large cyclonic storms occurring in the western hemisphere. Similar storms are known as typhoons in the western Pacific, cyclones in the Indian Ocean, and Willy-Willys near Australia.

A HURRICANE GLOSSARY

Bulletin: A public release from a Weather Service Hurricane Warning Office issued at times other than those when advisories are required. A bulletin is similar in form to an advisory but includes additional general newsworthy information.

Cautionary Advice to Small Craft: When a hurricane is within a few hundred miles of a coastline, small craft operators are warned to take precautions and to avoid entering the open sea.

Cyclone: A closed system of cyclonic (counterclockwise direction) circulation characterized by low pressure and inclement weather.

Extreme Hurricane: A tropical cyclone with maximum winds of 136 m.p.h. (118 knots) or higher and minimum central pressure of 28.00 inches $\mathrm{Hg}(711.20 \mathrm{~mm} \mathrm{Hg}$ or 948.19 mb) or less.

Eye: The roughly circular area of comparatively light winds and fair weather at the center of a hurricane.

Gale Warning: A notice added to small craft advisories when winds of $38-55 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. are expected.

Hurricane: A tropical cyclone with sustained winds of $74 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. (64 knots) or greater.

Hurricane Warning: A warning that within 24 hours or less a specified coastal area may be subject to (a) sustained winds of 74 m.p.h. (64 knots) or higher and/or (b) dangerously high water or a combination of
dangerously high water and exceptionally high waves, even though winds expected may be less than hurricane force.

Hurricane Watch: The first alert when a hurricane poses a possible, but as yet uncertain, threat to a certain coastal area, or when a tropical storm threatens the watch area and has a $50-50$ chance of intensifying into a hurricane. Small craft advisories are issued as part of a hurricane watch advisory.

Land Subsidence: The sinking of the land, caused mainly by the withdrawal of underground water from wells supplying cities and industries. This phenomenon may cause coastal areas to become more vulnerable to tropical storm flooding.

Local Action Statement: A public release prepared by a Weather Service Office in or near a threatened area giving specific details for its area of responsibility on weather conditions, evacuation notices, and other precautions necessary to protect life and property.

Major Hurricane: A tropical cyclone with maximum winds of $101 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. to $135 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. (88 to 117 knots) and a minimum central pressure of 28.01 to 29.00 inches Hg (711.45 to 736.60 mm Hg or 948.53 to 982.05 mb).

Seiche: A series of fast-moving waves that sometimes are superimposed upon the storm surge. This phenomenon may cause total destruction and great loss of life.

Storm Surge: An abnormal rise in the level of the sea produced by the hurricane. This inundation is usually responsible for the greatest loss of life and destruction of property.

Storm Warning: A notice added to small craft advisories when winds of 56.73 m.p.h. are expected. Both gale and storm warnings indicate the coastal area to be affected and the expected intensity of the disturbance.

Tornado: A violen tly rotating column of air, nearly always observable as a funnel cloud.

Tornado Forecast Information: An advisory stating that conditions are such that tornadoes may occur.

Tornado Warning: An advisory stating that a tornado actually has been sighted by human eye or indicated by radar.

Tropical Cyclone: A general term for the nearly circular cyclones that originate over tropical oceans. It includes tropical storms, tropical depressions, and all types of hurricanes.

Tropichl Cyclone /Wimicme Adyisories: Messages issued Smultancously by the Huricane Waning Offices and the National Mumicane Conler in Miami every ss hour descrbins ye stom, its postion, anticipated movement, and pros pective thicat:

Tropicol Depression: A tromical cyclome will sumained Wincs of less then 39 mp h. (34 knots).

Thonied Siomi a tropical cyclone with sutamed winds of 39 w 73 min.l. 34 w 63 knots).

 Slow Della s locuted on the eastem coast of Texas and liopich Stom Chistine ts nem Puerto Rico. Photo coutesy of NOAANESS.

Fig. 2. The remams of a bullaing atter. the walls were collapsed ly winds of Humiane Culic. Photo by Texas Uigh way Departnent.

IV DESCRIPTION OF THE HURRICANE

Tropical cyclones orm and riow over varm water Thase which eppreach the Texas coast form over the Gulf of Mexico, the Carbbean Sea, or the tropical areas of the Nom Allantic Ocean. These aress are under the inlluence of the trade winds, wieh are on the south side of the Azores Beymida high (see fis 3). On occasion a low pressure alea toms in the broad fow of the trade winds, and a fev of these bws develop inio impical cy clomes.

When a low intersties, winds blow countercloek wise Found it, an extensive cloud Gaer fomis and rain showers develon, II meteorological conditions ne fuvorable, a tropical cy cone may develop through the stages of tropical depression, lropical storm, buricane, and even to an exileme humicale

It is importarilio mealize that each hurncane is dillerent. The descripion that follows is generat and night hel apply in all aspects to a specilie fumicane.

The eve of a hurricane is the fealure which makes :1: ubigle from celobic stoms of the noie nom then latitudes The eye is s sonewhat clicular area of compar tivety light winds. It is usualy raintree and may vary from fout to more than 40 miles an diameter. Dedmeters of 12 to 20 miles are common. The eye ib the loual point of he hurricane:

As canbe seen in. Ig. 4 herreane winds ate not symmetrical aboot the eye. When facing the direction in which the hurticane is moving, the sterngest whds wil wailly be to the righ if the cye and may approach a speed of 200 m. ip The radlus of hurticane force whids may be 50 miles, bui it valles trom ten miles in stmall hurticanes to a humdred miles in arger siorris, The strength of the wind decreases m relation to the distance rom the eye as shown in Fis, 4. A 200 miles, tom the eve the winds may be gale force and gusty.

Ramtall forms in cumulowimbus clouss. The clouds location wi th respect to the eye is show schematically intis. S. Raingill is showery and quile variable. As the Filin louids moue past, rinin larms and stops. Rain clolids spin around the storm ilie a large minwheet while the center of the pinwheel also is noving. Thus, the novement of ary one shover is diflcult to mustrale Rain s nol unfformly distributed about the eve, with most Gling in the area of maxmum winds, Ran soutlls may exiend ont from the eye for 20 to 200 miles.

Low sud clouds accompany areas ot ram. CIrlus clouds cover the cyclone and extend outwatd firm li. Prion to the use of rada and ariciall reconmissance, cirus clouds wet the tist sign that a stomp was approachins. The sateline photo, fig g, shows cioud cover, yul imbands atc oarthally hidden by cinus clouds. An example of: showerarea is shown in the tadal picture, Ifs: 7

Minricanes cause destriction in several yuys:
Stronty wild may desmoy some struclures as shown IITII2.

Stom surue ean level suruelures and hoal houses and boats from their oundations and noonings fiss. 8 . and 9 show the at emath of the storm surge:

Hequy fins may cause Hooding in the flood plaims:
Tomadoes are ofien associated with huricanes.

Residual problems, such as displacement of shates from belf ustal habitats, distuption of communicat tions, and destruction of ullites, may arise at er the passage of a humicane, Public heal h measures mest be taken to prevent IUness and epidemics.

[^0]

Fig. 4. A schematic representation of the wind distribution around the eye of an extreme hurricane. The large arrow pointing to the upper left indicates the direction of the hurricane movement. The smaller arrows indicate the wind direction within the hurricane. The light hatching indicates the area of hurricane strength winds. The darker hatching indicates the area of winds greater than 136 miles per hour. The graphs below indicate the variation of wind strength along the lines $A-B$ and $C-D$.

Fig. 5. A schematic plane view and side view of the rain clouds of the same generalized hurricane in Fig. 4. The heavy arrow indicates the direction of the hurricane movement. The rain clouds are arranged in spiral bands. Clouds along cross sections about the direction of movement are indicated in the side view. Cloud types shown are cumulonimbus (CB), altostratus (AS), stratus (ST), and cirrus (CC). Cirrus clouds cover the entire storm, and low stratus (scud) clouds hide the upper cloud structure from the ground.

Fig. 6. A satellise bicture of thumicane Bewlah. The eye is ensy to dontifl iust below the t Note that he eyc li not m lhe centerof the cloud moss: The spital bonds of clouds can be seen ground the eye. Pholo countes of the National Humicane Center.

V: A BRIEE RESUMÉ OF A FEW TEXAS HURRICANES

On September 16,1875 a humicale hillidianolas Texis. The stom surge caried avay threefouthe of the Town and kiled 176 people Eleven years later, on August 20, 1886 , Indianola was stiuek asain. This the the stom surge carlied away or left unimhabitible evers house in the town. Indizaola was never rebull and today the area isa state park. The Indianola expenience clearly Ilustrates the destivelion due to stom surges:

Hurticane Cella, Nugusle.5, 1970, destroyed an estmited s soo milmen worth of property and became the costlest humene to stle the Texas coast in iemus of promerly damage. Wealher Wise, a publication of the American Meteorological Society, describes some of Cella's unigue characteristics. Iilst, neatly all damage esulied from wind (Fis. 10) and not hooding or stom suige. Second, the highest whds occurred in the rea leflhand Guadrant wher than in the fighl front guadrant as would be expected and came in stueks spaced about 1.5 miles abart. Between these streaks almost no damage resulted.
even to the trallest of striclures, Third, Cella intensfied explosively ust prion to landal:

The heavies rams ton Cella amuunted lom only 6.50 Inches il Aransas Pass and 638 incher at Gopus (Lnishl: The towns of Peatsall and ourdanton, located last 30 to 40 miles north of the eye of the humicane, experieneed no aimfall at al. The lishest stomisurges occured a Porl Aishsas Peach and Port Aunsas Iety and measured ony 02 and 9.0 feet above nean sea level, respectively.

Celindemenstrated two categories of wird damage that may accompriy an exteme huricane. First, many buldings collapsed due to pressure from rampasing, rainladen winds. The pressure exerted on a surface increases asa Tunction of the square of the Widd speed. This theans that buldings which cam withstand winds of 60 meph. may bucke under wircs of 800 mip hi. because the pressure on Their surfaces has increased by a tactor of 9 . Second, on the lee sede of lage buldinge the dymatie effect of the wind rends to cleate a patill vaculm. The force due to This vacumm may be strong engugh to cause Nindows to Be blown outward. Wind entering the bulding trom the Windurd side asments this pressue differ nee and increases the possibiliy of wndows being blown ourvard. A person taking sheller behind a lange bullailg coula be Bhowered with talling glass. Some high-rse buidingsth. Corpus Chisil lest their windows and doons durng Celia (1970)because of thls phenomenon

Fio. I. A radar picure of Cella taken trom the Galieston Toul, 124S Gremwich Meom Tine August 3. 1970 Cello was not a ramy humicane, but the spiral bancs of rom clouds do lhow The eye is the blach hole below the cemier of the rador prewe, between the second and third migs. Photo courtesy of the National Huricane Center.

Fiv. 8. Beat corlied inlonet by the storm surge ot Mlumiame Calla. Plioto by the Texas State High way Depatment.

BeUah was mother milque texa, huricane. Not omy did she drench the state with the greatest mounts of inan Iall, but stre also spawned more tomedoes (more that 100) thil ony frumicale on record. Almost the cemere area from Muragorde Bay nom thwesward io Smi Anvonio and southe. ward iol laredo recefved at least 10 inches of rilh between The 19 th and the 3 Brd of Sepiember. 1967. This patially Was due to her urigue track, firs mowing nom thatd, then recurving southuestward and enterimy Mexico south of Liredo. Many areas recelved delvges in excess ot a oinches, ard a few ireas were hundated win up to 30 niches of sain. Many stablons secelved mome abn in loul days than they nom mally would reeelve in a vear.

These terienlial rans et bt maioy lloolmo of every Tiver and siream southor San Anionio. The San Antonio Wiver set he whom frecords when it crested at 13 A leet aboveits Hood stage ot 35.1 feet The Nueces River cresied at 46 tect, 2 teet dhove its pieviers all lime high. The lavaca Ruyer cresied al 32 leet above lis flood stage of 21.0 feel The Navidadiver, Which ulso his a Tood stage of 21.0 feet her the town of Ganado, crested at 319 teet Much to the chaemp of lecal cridents, olly. retidues gatiled lwim on fields by llood waters were deposited on fuldings, thes leavins dislinetive high water marks.

Beulhs more than 100 fomadoes bioke lumicane Caila's lecord of 26 nis Semember 190 . Usualy, tomadoes prodeced by hurlmes hive n dimeter and ground path length of about balt the magnitude of tornatbes fomed on the Great Plans. The tedieed magnt de of these hulricane as socialid wistert could be one of the reasons Why enly five people died due to Beuth's iornaloes. Beulih's winds acheved buricane force but weakened Giter land all so that during the heavy amtall period she degenerared nie a mioui al iepicssion.

Not all hurricanes are as untque as Celia and Beulah. Call, like nost huricanes which slam the lexas coast. was oredictable, But the did not dimmish her potential Tor damage. Canla, anexteme hurtione, maged Central Texas from Viclonia to Dallas nd coused 300 millon damaee. She conlimed nompward into he Dako cas causing heavy rims. In terms of monetary damage she is second only to Celia, Port Lavare took the brint of the stom surge and measured tides IS\& reet aboue nomal. Ranfall Tanged from 282 niches at Patis, in Last Iexas, to a Gorrental 16.23 inches at the Galveston aimorl. Callas maximum winds peaked at an estimated: ITS mph.

Cuila was the largest hurricane In recorded history to strike Texas, even larger than he Great Galveston Hurficane of 1900 Yet with $\$ 300$ millon damage, ony 34 people. died during the storm Mass evacuation ot over 250,000 jeopletiom the cenilial and upper coastal cites resulted in the low death tol.

Fig. IO. The wime Imol iolu at Municme Celia. Photobs the Fexas State Mighway Deparinent:

 it Palacios, Texas, by Murticame Calla Photo by the Texas Pakk and Wildife Deparlmen:

VI. CLIMATOLOGICAL DATA

Christopher Columbus encountered the first hurricane reported in the New World during his second voyage. On June 16, 1494, he experienced a violent storm in the vicinity of Santo Domingo, which caused him to declare, "Nothing but the service of God and the extension of the monarchy should induce him to expose himself to such dangers." That same summer he encountered two more violent storms.

During the 103-year period, 1871-1973, 43 hurricanes made landfall in Texas. Ten more came close enough to the coast to cause damage. During the same period 25 tropical storms entered the Texas coast and 12 sideswiped the area. For a complete listing of these storms see Appendix I of this booklet.

On the average the Texas coast experiences a hurricane every other year and a tropical storm every third year. However, no real uniformity exists because some years have two or more tropical cyclones while others experience none.

Tropical cyclones form only during certain seasons of the year and only in certain regions of the oceans. Since 1871, which is as far back as our records extend, no tropical cyclone has hit the coast of Texas before June or after October. This does not mean that they cannot form or strike Texas during other months, because new weather records are established almost every day. Tropical cyclones have formed as early as February and as late as December, but for Texas the season of vulnerability has been from June through October. Fig. 11 shows the earliest and latest occurrences of tropical cyclones for $50-\mathrm{mile}$ segments of the Texas coast.

The path of the eye differs in each tropical cyclone. Appendix II presents the partial tracks of cyclones entering Texas or coming close to Texas for the years 1871 to 1973.

VII. WHAT'S THE PROBABILITY?

On the average, one tropical storm or one hurricane occurs every year. However, none occurred during half the years between 1871 and 1973. No tropical storm activity at all was reported from 1903 to 1908. Therefore, the average occurrence of hurricanes and tropical storms has little meaning when applied to any one year.

The Texas coast is long, and considering the size of any hurricane, it can be seen that one storm may not affect the entire coast. The storm tracks show that, in general, storms approach the coast at right angles (Appendix II). However, in some unusual cases storms may travel parallel to the coast causing damage along almost the entire coast of Texas.

Climatological frequencies are usually accepted as probabilities for the future. In this case, with approximately a hundred years of records (1871-1973) available, some reliance can be placed upon the determined climatological frequencies and they may be interpreted as probabilities.

In Fig. 12, the coastline is divided into 50-mile segments and the probability of tropical storm and hurricane occurrence during any one year period is computed for each segment to show variability along the coast and to estimate frequency of damage. The computed segment percentages are smaller than those given for the entire Texas coast because of the much shorter coastline involved. Probability data for each coastal section is presented in terms of three classes of storms: (1) tropical cyclones, excluding tropical depressions; (2) all hurricanes; and (3) only extreme hurricanes. A 20 percent chance indicates one occurrence in five years. (Note: This type of data may vary because of the differing criteria established by various authors.)

If a tropical storm makes landfall in any one of the 50 -mile segments, it is considered to affect the segment to the right. A hurricane is considered to affect all segments within 50 miles of the eye. An extreme hurricane influences the area 100 miles to the right and 50 miles to the left of the eye. Tropical storms which come within 50 miles of the coast without making landfall also are considered to affect coastal segments.

Fig. 13 shows the average number of years between tropical cyclones of different intensities for each coastal segment. At first look, there appears to be a discrepancy between Figs. 12 and 13. This occurs because more than one cyclone may hit during a season, and when this occurs it usually is counted in two or more segments. One cyclone during one summer and one the next summer would be counted as one year. An occurrence every other year would be two years.

More than one tropical cyclone can occur during any season within any $50-$ mile segments. Fig. 14, based on data from 1871 to 1973 , shows the probability that two or more tropical storms or hurricanes will affect the same segment during the same year. A particular segment of coast will be hit twice during a season on the average of one year out of 20 .

All the information shown here is presented as averages. The reader must be aware that hurricanes do not understand averages and each behaves as it wishes without regard to the actions of previous cyclones. Each has its own individual pattern. Nevertheless, the concept of using climatological averages as probabilities for the future is a standard procedure and, with a hundred years of data, these values may be considered a reliable guide.

Fig. 11. The earliest and latest dates that a tropical cyclone has ever affected specified 50-mile segments of the Texas coast during the years 7871-1973.

Fig. 12. Probability in percent of tropical storms and hurricanes affecting specified 50 -mile segments of the Texas coast during any one year.

Fig. 13. Average number of years between the occurrence of tropical cyclones in specified 50 -mile segments of the Texas coast based on data from 1871-1973.

Fig. 14. The percent of years that two or more tropical cyclones have affected the same 50-mile segment during one season based on data from 1871-1973.

APPENDIXI

A chronological listing of the Tropical Cyclones which affected Texas from 1871-1973 is given in Table 1. Table 2 gives a summary by month of the data presented in Table 1.

TABLE 1

A list by date of hurricanes and tropical storms which made landfall on the Texas Coast, came close enough to affect it, or entered Texas through Mexico or Louisiana:

1901

June 4
June 9
October 2

July 4
August 4
September 16
September 16
August 22
June 24
August 12
August 13
September 18
June 14
August 20
September 22
October 12
September 21

June 16
July 5
July 5
August 29
October 6

September 12
September 27
September 8 ,

July 10

Tropical Storm made landfall near Galveston
Tropical Storm made landfall near Galveston
Hurricane passed near central Texas coast

Hurricane made landfall near Indianola
Tropical Storm passed near lower Texas coast
Hurricane decimated Indianola
Tropical Storm passed near entire Texas coast
Tropical Storm moved inland near High Island
Hurricane moved inland near Victoria
Hurricane passed near lower Texas coast
Hurricane made landfall near Corpus Christi
Hurricane passed near lower Texas coast
Tropical Storm passed near central and upper Texas coast
Hurricane decimated Indianola, town never rebuilt
Hurricane moved inland near Brownsville
Hurricane moved inland near Beaumont

Hurricane made landfall near Brownsville

Hurricane made landfall near Matagorda
Tropical Storm made landfall near Matagorda
Hurricane moved inland near Matagorda
Hurricane moved inland near Brownsville
Tropical Storm moved inland near Galveston

Hurricane moved into Texas from Louisiana
Tropical Storm moved inland from Galveston
Hurricane decimated Galveston, worst weather disaster in U.S. history

Tropical Storm moved inland near Victoria

1902	June 26	Hurricane made landfall near Victoria
1909	June 30	Tropical Storm moved inland between Corpus Christi and Brownsville
	July 21	Hurricane made landfall south of Galveston
	August 27	Hurricane made landfall south of Brownsville
1910	August 31	Tropical Storm made landfall south of Brownsville
	September 14	Hurricane made landfall between Corpus Christi and Brownsville
1912	October 16	Hurricane made landfa!l between Corpus Christi and Brownsville
1913	June 27	Hurricane made landfall between Corpus Christi and Brownsville
1914	September 19	Tropical Storm moved into Texas from Louisiana
1915	August 17	Hurricane made iandfall near Matagorda
1916	August 18	Hurricane made landfall near Corpus Christi
1918	August 6	Hurricane made landfall east of Beaumont in Louisiana
1919	September 15	Hurricane moved inland just south of Corpus Christi
1921	June 22	Hurricane made landfall near Victoria
1925	September 6	Tropical Storm moved inland near Brownsville
1926	August 27	Tropical Storm moved into Texas from Louisiana
	September 22	Tropical Storm moved into Texas from Louisiana
1929	June 28	Hurricane moved inland between Victoria and Corpus Christi
1931	June 27	Tropical Storm moved inland near Corpus Christi
1932	August 13	Hurricane moved inland near Galveston
1933	July 22	Tropical Storm made landfall near Matagorda
	August 4	Hurricane moved inland near Brownsville
	September 4	Hurricane moved inland near Brownsville
1934	July 25	Hurricane moved inland near Corpus Christi
	August 27	Hurricane passed near entire Texas coast
1936	August 27	Hurricane made landfall near Corpus Christi
	September 13	Tropical Storm moved inland near Brownsville
1938	August 14	Hurricane moved into Texas from Louisiana
	October 17	Tropical Storm made landfall near Matagorda
1940	August 7	Hurricane made landfall at Texas-Louisiana border
	September 23	Tropical Storm passed near upper Texas coast
1941	September 14	Tropical Storm made landfall near High Island
	September 23	Hurricane moved inland near Matagorda
1942	August 21	Hurricane moved inland at Galveston
	August 29	Hurricane moved inland at Corpus Christi

1943	July 27 September 27	Hurricane made landfall at Galveston Hurricane passed near lower Texas coast
1945	July 21	Tropical Storm moved inland south of Corpus Christi
	August 27	Hurricane moved inland near Victoria
1946	July 16	Tropical Storm moved inland near Beaumont
1947	August 1	Tropical Storm moved inland near Brownsville
	August 24	Hurricane made landfall at Galveston
	September 19	Tropical Storm moved into Texas from Louisiana
1949	October 3	Hurricane made landfall near Matagorda
1954	June 25	Hurricane Alice made landfall south of Brownsville and moved up the Rio Grande
	July 29	Tropical Storm Barbara moved into Texas from Louisiana
1955	August 2	Tropical Storm Brenda moved into Texas from Louisiana
	August 27	Tropical Storm moved into Texas from Louisiana
1957	June 27	Hurricane Audrey made landfall just east of the Texas-Louisiana border
	August 9	Tropical Storm Bertha made landfall at the Texas-Louisiana border
1958	June 15	Tropical Storm Alma made landfall south of Brownsville and moved up the Rio Grande
	August 6	Tropical Storm Ella made landfall near Corpus Christi
1959	July 25	Hurricane Debra moved inland at Galveston
1960	June 24	Tropical Storm moved inland near Corpus Christi
1961	September 11	Hurricane Carla moved inland near Victoria
1963	August 17	Hurricane Cindy made landfall near High Island
1964	August 7	Tropical Storm Abby moved inland near Matagorda
1967	September 20	Hurricane Beulah moved inland between Brownsville and the mouth of the Rio Grande
1968	June 23	Tropical Storm Candy made landfall near Corpus Christi
1970	August 3	Hurricane Celia moved inland at Corpus Christi
	September 16	Tropical Storm Felice moved inland near Galveston
1971	September 10	Hurricane Fern moved near Matagorda
	September 14	Hurricane Edith passed near entire Texas coast
1973	September 5	Tropical Storm Delia moved inland between Galveston and Matagorda

TABLE 2

Table 2 contains the total number by month of hurricanes or tropical storms that hit the Texas coast, moved into Texas from Mexico or Louisiana, or affected the Texas coast as they passed through the Gulf of Mexico during the period from 1871 to 1973:

	June	July	August	September	October
Hurricane	8	6	13	13	3
Tropical Storm	7	4	4	8	2
Hurricane came close	1	0	5	3	1
Tropical Storm came close	2	1	4	5	0

Number of years without a tropical cyclone: 44
APPENDIX II
The tracks of individual tropical storms and hurricanes are shown. Tracks are separated by months and part of months. The year is indicated at the end of the track.

June 21-30
June 1-20

July 16-31

July $1-15$

August 16-31

TROPICAL STORM AND HURRICANE TRACKS

October 1-31

September 11-30

REFERENCES

Bodine, B. R. Technical Memorandum No. 26, Hurricane Surge Frequency Estimated for the Gulf Coast of Texas. U. S. Army Coastal Engineers Research Center, Washington, D. C. February 1969.

Boone, C. F. et al., . . . and Celia Was Her Name. Boone Publications, Inc., Lubbock, Texas. 1970.

Carr, John T. Report 49, Hurricanes Affecting the Texas Guif Coast. Texas Water Development Board, Austin, Texas. June 1967.

Grozier, R. U. et al. Report 83, Floods from Hurricane Beulah in South Texas and Northeastern Mexico, September-October 1967. Texas Water Development Board, Austin, Texas, September 1968.

Harris, D. L. Technical Paper No. 48, Characteristics of the Hurricane Storm Surge. U. S. Department of Commerce, Weather Bureau, Washington, D. C. 1963.

Hill, E. L. et al. Tornadoes Associated with Cyclones of Tropical Origin-Practical Features. Journal of Applied Meteorology, Vol. 5, No. 6. December 1966.

Hogan, W. L. Hurricane Caria: A Tribute to the News Media. Leaman-Hogan Company, Houston, Texas. 1961.

Simpson, R. H. \& Lawrence, M. B. NOAA Technical Memorandum NWS SR-58, Atlantic Hurricane Frequencies Along the U.S. Coastine. U.S. Department of Commerce, National Oceanic and A tmospheric Administration, National Weather Service, Southern Region Headquarters, Fort Worth, Texas. June 1971.

Simpson, R. H. \& Hope, J. R. Atlantic Hurricane Season of 1971. Monthly Weather Review, Vol. 100, No. 4. April 1972.

Simpson, R. H. \& Pelissier, J. M. Atlantic Hurricane Season of 1970. Monthly Weather Review, Vol. 99, No. 4. April 1971.

Sugg, A. L. ESSA Technical Memorandum WBTM SR-49, A Meon Storm Surge Profile. U. S. Department of Commerce, Environmental Science Services Administration, Weather Bureau, Southern Region Headquarters, Fort Worth, Texas. December 1969.

Sugg, A. L. \& Hebert, P. J. The Atlantic Hurricane Season of 1968. Monthly Weather Review, Vol. 97, No. 3. March 1969.

Sugg, A. L. \& Pelissier, J. M. The Hurricane Season of 1967. Monthly Weather Review, Vol. 97, No. 3. April 1968.

Tannehill, I. R. The Hurricone, U.S. Department of Commerce, Weather Bureau, Washington, D. C. 1956.
_ Hurricanes. Princeton University Press, Princeton, New Jersey. 1945.

Treadwell, M. E. Hurricane Caria. U. S. Government Printing Office, Washington, D. C. 1962.

Hurricane, The Greatest Storm on Earth. U. S. Department of Commerce, National Oceanic and Atmospheric Administration, Washington, D. C. 1971.

Technical Paper No. 55, Tropical Cyclones of the North Atlantic Ocean. U.S. Department of Commerce, Weather Bureau, Washington, D. C. 1965.

Report on Hurricane "Beulah," 8-21 September 1967. U. S. Army Engineer District, Galveston, Texas. September 1968.

Report on Hurricane "Carla," 9-12 September 1967. U. S. Army Engineer District, Galveston, Texas. January 1962.

Report on Hurricane "Celia," 30 July - 5 August 1970. U. S. Army Engineer District, Galveston, Texas. February 1971.

FUTURE BOOKLETS

This series will include two more booklets. Volume II will deal with the principle types of damage that may accompany a tropical storm or a hurricane such as: storm surge, high winds and tornadoes, and heavy rains. Some recent Texas hurricanes will serve as examples to show how types of damage can vary from hurricane to hurricane. Volume III will describe the precautions that individuals may undertake to minimize hurricane hazards. It will outline actions governmental agencies may take to help before, during, and after a hurricane strikes.

[^0]: Fig. 3. Schemotic devetopment of a ropicul cyclone man easterly wave loctied to the south of the trode wind bett. Adpoted and mooltred from Hurticane, the Greatest Storm on Earth, by NOA4, see reforences:

